Categories:

Vitamin K, Calcification, & Atherosclerosis

Also See:
Intestinal Bacteria Synthesize Vitamin K2
Bone Health and Vitamin K
Calcium to Phosphorus Ratio, PTH, and Bone Health
Intestinal Serotonin and Bone Loss
Carbohydrates and Bone Health
Parmigiano Reggiano cheese and bone health
Calcium Paradox
Blood Pressure Management with Calcium & Dairy
Hypertension and Calcium Deficiency
Excess Dietary Phosphorus Lowers Vitamin D Levels
Fatty Acid Synthase (FAS), Vitamin D, and Cancer
ARTERIOSCLEROSIS CAN BE REVERSED by Dr. James Howenstine, MD

Food Nutr Res. 2012;56. doi: 10.3402/fnr.v56i0.5329. Epub 2012 Apr 2.
Vitamin K: the effect on health beyond coagulation – an overview.
Vermeer C.
Vitamin K is essential for the synthesis of proteins belonging to the Gla-protein family. To the members of this family belong four blood coagulation factors, which all are exclusively formed in the liver. The importance of vitamin K for hemostasis is demonstrated from the fact that vitamin K-deficiency is an acute, life-threatening condition due to excessive bleeding. Other members of the Gla-protein family are osteocalcin, matrix Gla-protein (MGP), and Gas6 that play key functions in maintaining bone strength, arterial calcification inhibition, and cell growth regulation, respectively. In total 17 Gla-proteins have been discovered at this time. Recently, it was observed that the dietary vitamin K requirement for the synthesis of the coagulation factors is much lower than for that of the extra-hepatic Gla-proteins. This forms the basis of the triage theory stating that during poor dietary supply, vitamins are preferentially utilized for functions that are important for immediate survival. This explains why in the healthy population all clotting factors are synthesized in their active form, whereas the synthesis of other Gla-proteins is sub-optimal in non-supplemented subjects. Prolonged sub-clinical vitamin K deficiency is a risk factor for osteoporosis, atherosclerosis, and cancer. Present recommendations for dietary intake are based on the daily dose required to prevent bleeding. Accumulating scientific data suggests that new, higher recommendations for vitamin K intake should be formulated.

Menopause Int. 2011 Mar;17(1):19-23. doi: 10.1258/mi.2011.011006.
Vitamin K, osteoporosis and degenerative diseases of ageing.
Vermeer C, Theuwissen E.
The function of vitamin K is to serve as a co-factor during the post-translational carboxylation of glutamate (Glu) residues into γ-carboxyglutamate (Gla) residues. The vital importance of the Gla-proteins essential for normal haemostasis is well recognized. During recent years, new Gla-containing proteins have been discovered and the vitamin K-dependent carboxylation is also essential for their function. It seems, however, that our dietary vitamin K intake is too low to support the carboxylation of at least some of these Gla-proteins. According to the triage theory, long-term vitamin K inadequacy is an independent, but modifiable risk factor for the development of degenerative diseases of ageing including osteoporosis and atherosclerosis

Eur J Nutr. 2004 Dec;43(6):325-35. Epub 2004 Feb 5.
Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health.
Vermeer C, Shearer MJ, Zittermann A, Bolton-Smith C, Szulc P, Hodges S, Walter P, Rambeck W, Stöcklin E, Weber P.
Vitamin K is well known for its role in the synthesis of a number of blood coagulation factors. During recent years vitamin K-dependent proteins were discovered to be of vital importance for bone and vascular health. Recommendations for dietary vitamin K intake have been made on the basis of the hepatic requirements for the synthesis of blood coagulation factors. Accumulating evidence suggests that the requirements for other functions than blood coagulation may be higher. This paper is the result of a closed workshop (Paris, November 2002) in which a number of European vitamin K experts reviewed the available data and formulated their standpoint with respect to recommended dietary vitamin K intake and the use of vitamin K-containing supplements.

PM R. 2011 Jun;3(6 Suppl 1):S82-7. doi: 10.1016/j.pmrj.2011.04.008.
Vitamin K: fracture prevention and beyond.
Falcone TD, Kim SS, Cortazzo MH.
Morbidity and decreased function related to osteoporosis, fracture, cardiovascular disease, stroke, and peripheral vascular disease are encountered by clinicians daily. Although we have seen vast advancement in treatment and management of these conditions, preventative practice has unfortunately served a lesser role in patient care. Increasing the dietary intake of vitamin K may have substantial utility in the prevention of these disease states. Since the discovery of vitamin K in 1935, its primary role was thought to be involved in the synthesis of clotting factors II, VII, IX, and X. Recently, its function in other metabolic pathways has emerged, leading to exploration of its significance beyond coagulation. Vitamin K is essential to bone physiology and prevention of atherosclerosis. It is involved in bone remodeling, cell signaling, apoptosis, arterial calcification, and chemotaxis, and it has anti-inflammatory effects. Conversely, warfarin, a potent vitamin K inhibitor, has demonstrated adverse effects on bone remodeling and atherosclerosis. Natural forms of vitamin K are available in multiple dietary sources, and some structural forms are more readily available for use in metabolic pathways than are others. With regard to supplementation, the specific form of vitamin K is often not disclosed, and the recommended daily value is potentially less than what is physiologically required. On the basis of a review of the literature, it appears advantageous to encourage patients to eat a diet rich in vitamin K; however, the benefit of vitamin K supplementation alone is yet to be thoroughly conveyed.

Atherosclerosis. 1995 Jul;116(1):117-23.
Vitamin K intake and osteocalcin levels in women with and without aortic atherosclerosis: a population-based study.
Jie KS, Bots ML, Vermeer C, Witteman JC, Grobbee DE.
Protein-bound gamma-carboxyglutamate (Gla) has been demonstrated in calcified atherosclerotic plaques. Vitamin K is required for the formation of Gla-residues. As the biological activity of Gla-proteins appears to be strictly dependent on the presence of the Gla-residues, vitamin K status may be an important factor in the development and progression of atherosclerotic calcifications. We studied the association of vitamin K status, as assessed by nutritional vitamin K intake and the measurements of two circulating immunoreactive osteocalcin (irOC) fractions, with aortic atherosclerosis in a population-based study of 113 postmenopausal women. Women with calcified lesions (n = 34) had a 42.9 micrograms lower mean age-adjusted dietary vitamin K intake/day (95% C.I. -6.6 to 92.5) than those without calcifications (n = 79). Atherosclerotic women had higher irOC levels with a low affinity for hydroxyapatite (irOCfree): age-adjusted difference of 0.32 ng/ml (95% C.I. 0.03 to 0.61). In addition, the high affinity irOC levels expressed as a percentage (hydroxyapatite binding capacity, HBC) were 5.12% (95% C.I. 1.32 to 8.92) lower in women with calcifications. Our study indicates that women with aortic atherosclerosis have an impaired vitamin K status as reflected by a lower nutritional vitamin K intake, an increased irOCfree level and a reduced HBC level. An impaired vitamin K status in subjects with atherosclerosis is compatible with the view that vitamin K or Gla-containing proteins are involved in the development of calcification of the vessel wall.

PLoS One. 2012;7(8):e43229. doi: 10.1371/journal.pone.0043229. Epub 2012 Aug 29.
Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype.
Schurgers LJ, Joosen IA, Laufer EM, Chatrou ML, Herfs M, Winkens MH, Westenfeld R, Veulemans V, Krueger T, Shanahan CM, Jahnen-Dechent W, Biessen E, Narula J, Vermeer C, Hofstra L, Reutelingsperger CP.
BACKGROUND:
Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE(-/-) model of atherosclerosis.
METHODOLOGY/PRINCIPAL FINDINGS:
A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE(-/-) mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K(1) (VK(1), 1.5 mg/g) or vitamin K(1) and warfarin (VK(1)&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden.
CONCLUSIONS/SIGNIFICANCE:
VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE(-/-) mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.

Adv Nutr. 2012 Mar 1;3(2):158-65. doi: 10.3945/an.111.001644.
Vitamin K status and vascular calcification: evidence from observational and clinical studies.
Shea MK, Holden RM.
Vascular calcification occurs when calcium accumulates in the intima (associated with atherosclerosis) and/or media layers of the vessel wall. Coronary artery calcification (CAC) reflects the calcium burden within the intima and media of the coronary arteries. In population-based studies, CAC independently predicts cardiovascular disease (CVD) and mortality. A preventive role for vitamin K in vascular calcification has been proposed based on its role in activating matrix Gla protein (MGP), a calcification inhibitor that is expressed in vascular tissue. Although animal and in vitro data support this role of vitamin K, overall data from human studies are inconsistent. The majority of population-based studies have relied on vitamin K intake to measure status. Phylloquinone is the primary dietary form of vitamin K and available supplementation trials, albeit limited, suggest phylloquinone supplementation is relevant to CAC. Yet observational studies have found higher dietary menaquinone, but not phylloquinone, to be associated with less calcification. Vascular calcification is highly prevalent in certain patient populations, especially in those with chronic kidney disease (CKD), and it is plausible vitamin K may contribute to reducing vascular calcification in patients at higher risk. Subclinical vitamin K deficiency has been reported in CKD patients, but studies linking vitamin K status to calcification outcomes in CKD are needed to clarify whether or not improving vitamin K status is associated with improved vascular health in CKD. This review summarizes the available evidence of vitamin K and vascular calcification in population-based studies and clinic-based studies, with a specific focus on CKD patients.

Z Kardiol. 2001;90 Suppl 3:57-63.
Role of vitamin K and vitamin K-dependent proteins in vascular calcification.
Schurgers LJ, Dissel PE, Spronk HM, Soute BA, Dhore CR, Cleutjens JP, Vermeer C.
OBJECTIVES:
To provide a rational basis for recommended daily allowances (RDA) of dietary phylloquinone (vitamin K1) and menaquinone (vitamin K2) intake that adequately supply extrahepatic (notably vascular) tissue requirements.
BACKGROUND:
Vitamin K has a key function in the synthesis of at least two proteins involved in calcium and bone metabolism, namely osteocalcin and matrix Gla-protein (MGP). MGP was shown to be a strong inhibitor of vascular calcification. Present RDA values for vitamin K are based on the hepatic phylloquinone requirement for coagulation factor synthesis. Accumulating data suggest that extrahepatic tissues such as bone and vessel wall require higher dietary intakes and have a preference for menaquinone rather than for phylloquinone.
METHODS:
Tissue-specific vitamin K consumption under controlled intake was determined in warfarin-treated rats using the vitamin K-quinone/epoxide ratio as a measure for vitamin K consumption. Immunohistochemical analysis of human vascular material was performed using a monoclonal antibody against MGP. The same antibody was used for quantification of MGP levels in serum.
RESULTS:
At least some extrahepatic tissues including the arterial vessel wall have a high preference for accumulating and using menaquinone rather than phylloquinone. Both intima and media sclerosis are associated with high tissue concentrations of MGP, with the most prominent accumulation at the interface between vascular tissue and calcified material. This was consistent with increased concentrations of circulating MGP in subjects with atherosclerosis and diabetes mellitus.
CONCLUSIONS:
This is the first report demonstrating the association between MGP and vascular calcification. The hypothesis is put forward that undercarboxylation of MGP is a risk factor for vascular calcification and that the present RDA values are too low to ensure full carboxylation of MGP.

Am J Clin Nutr. 2009 Jun;89(6):1799-807. doi: 10.3945/ajcn.2008.27338. Epub 2009 Apr 22.
Vitamin K supplementation and progression of coronary artery calcium in older men and women.
Shea MK, O’Donnell CJ, Hoffmann U, Dallal GE, Dawson-Hughes B, Ordovas JM, Price PA, Williamson MK, Booth SL.
BACKGROUND:
Coronary artery calcification (CAC) is an independent predictor of cardiovascular disease. A preventive role for vitamin K in CAC progression has been proposed on the basis of the properties of matrix Gla protein (MGP) as a vitamin K-dependent calcification inhibitor.
OBJECTIVE:
The objective was to determine the effect of phylloquinone (vitamin K1) supplementation on CAC progression in older men and women.
DESIGN:
CAC was measured at baseline and after 3 y of follow-up in 388 healthy men and postmenopausal women; 200 received a multivitamin with 500 microg phylloquinone/d (treatment), and 188 received a multivitamin alone (control).
RESULTS:
In an intention-to-treat analysis, there was no difference in CAC progression between the phylloquinone group and the control group; the mean (+/-SEM) changes in Agatston scores were 27 +/- 6 and 37 +/- 7, respectively. In a subgroup analysis of participants who were > or =85% adherent to supplementation (n = 367), there was less CAC progression in the phylloquinone group than in the control group (P = 0.03). Of those with preexisting CAC (Agatston score > 10), those who received phylloquinone supplements had 6% less progression than did those who received the multivitamin alone (P = 0.04). Phylloquinone-associated decreases in CAC progression were independent of changes in serum MGP. MGP carboxylation status was not determined.
CONCLUSIONS:
Phylloquinone supplementation slows the progression of CAC in healthy older adults with preexisting CAC, independent of its effect on total MGP concentrations. Because our data are hypothesis-generating, further studies are warranted to clarify this mechanism. This trial was registered at clinicaltrials.gov as NCT00183001.

Thromb Res. 2008;122(3):411-7. doi: 10.1016/j.thromres.2007.12.005. Epub 2008 Jan 30.
Effects of the blood coagulation vitamin K as an inhibitor of arterial calcification.
Wallin R, Schurgers L, Wajih N.
INTRODUCTION:
The transformation of smooth muscle cells (VSMCs) in the vessel wall to osteoblast like cells is known to precede arterial calcification which may cause bleeding complications. The vitamin K-dependent protein MGP has been identified as an inhibitor of this process by binding BMP-2, a growth factor known to trigger the transformation. In this study, we determined if the vitamin K-dependent Gla region in MGP by itself can inhibit the growth factor activity of BMP-2 and if menaquinone-4 (MK4) regulates gene expression in VSMCs.
MATERIALS AND METHODS:
A synthetic gamma-carboxyglutamic acid (Gla) containing peptide covering the Gla region in human MGP was used to test its ability to inhibit BMP-2 induced transformation of mouse pro-myoblast C2C12 cells into osteoblasts. MK4 was tested by microarray analysis as a gene regulatory molecule in VSMCs.
RESULTS AND CONCLUSIONS:
The results show that the Gla – but not the Glu-peptide inhibited the transformation which provide evidence that the Gla region in MGP is directly involved in the BMP-2/MGP interaction and emphasizes the importance of the vitamin K-dependent modification of MGP. From the data obtained from the microarray analysis, we focused on two quantitatively altered cDNAs representing proteins known to be associated with vessel wall calcification. DT-diaphorase of the vitamin K-cycle, showed increased gene expression with a 4.8-fold higher specific activity in MK4 treated cells. Osteoprotegrin gene expression was down regulated and osteoprotegrin protein secretion from the MK4 treated cells was lowered to 1.8-fold. These findings suggest that MK4 acts as an anti-calcification component in the vessel wall.

Am J Clin Nutr. 2009 Oct;90(4):889-907. doi: 10.3945/ajcn.2009.27930. Epub 2009 Aug 19.
Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging?
McCann JC, Ames BN.
The triage theory posits that some functions of micronutrients (the approximately 40 essential vitamins, minerals, fatty acids, and amino acids) are restricted during shortage and that functions required for short-term survival take precedence over those that are less essential. Insidious changes accumulate as a consequence of restriction, which increases the risk of diseases of aging. For 16 known vitamin K-dependent (VKD) proteins, we evaluated the relative lethality of 11 known mouse knockout mutants to categorize essentiality. Results indicate that 5 VKD proteins that are required for coagulation had critical functions (knockouts were embryonic lethal), whereas the knockouts of 5 less critical VKD proteins [osteocalcin, matrix Gla protein (Mgp), growth arrest specific protein 6, transforming growth factor beta-inducible protein (Tgfbi or betaig-h3), and periostin] survived at least through weaning. The VKD gamma-carboxylation of the 5 essential VKD proteins in the liver and the 5 nonessential proteins in nonhepatic tissues sets up a dichotomy that takes advantage of the preferential distribution of dietary vitamin K1 to the liver to preserve coagulation function when vitamin K1 is limiting. Genetic loss of less critical VKD proteins, dietary vitamin K inadequacy, human polymorphisms or mutations, and vitamin K deficiency induced by chronic anticoagulant (warfarin/coumadin) therapy are all linked to age-associated conditions: bone fragility after estrogen loss (osteocalcin) and arterial calcification linked to cardiovascular disease (Mgp). There is increased spontaneous cancer in Tgfbi mouse knockouts, and knockdown of Tgfbi causes mitotic spindle abnormalities. A triage perspective reinforces recommendations of some experts that much of the population and warfarin/coumadin patients may not receive sufficient vitamin K for optimal function of VKD proteins that are important to maintain long-term health.

Thromb Haemost. 2007 Jul;98(1):120-5.
Vitamin K: the coagulation vitamin that became omnipotent.
Cranenburg EC, Schurgers LJ, Vermeer C.
Vitamin K, discovered in the 1930s, functions as cofactor for the posttranslational carboxylation of glutamate residues. Gammacarboxy glutamic acid (Gla)-residues were first identified in prothrombin and coagulation factors in the 1970s; subsequently, extra-hepatic Gla proteins were described, including osteocalcin and matrix Gla protein (MGP). Impairment of the function of osteocalcin and MGP due to incomplete carboxylation results in an increased risk for developing osteoporosis and vascular calcification, respectively, and is an unexpected side effect of treatment with oral anticoagulants. It is conceivable that other side effects, possible involving growth-arrest-specific gene 6 (Gas6) protein will be identified in forthcoming years. In healthy individuals, substantial fractions of osteocalcin and MGP circulate as incompletely carboxylated species, indicating that the majority of these individuals is subclinically vitamin K-deficient. Potential new application areas for vitamin K are therefore its use in dietary supplements and functional foods for healthy individuals to prevent bone and vascular disease, as well as for patients on oral anticoagulant treatment to offer them protection against coumarin-induced side effects and to reduce diet-induced fluctuations in their INR values.

Eur Heart J. 2011 Oct;32(20):2555-62. doi: 10.1093/eurheartj/ehr226. Epub 2011 Jul 20.
Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients.
Weijs B, Blaauw Y, Rennenberg RJ, Schurgers LJ, Timmermans CC, Pison L, Nieuwlaat R, Hofstra L, Kroon AA, Wildberger J, Crijns HJ.
AIMS:
Vitamin K antagonists (VKA) are currently the most frequently used drug to prevent ischaemic stroke in atrial fibrillation (AF) patients. However, VKA use has been associated with increased vascular calcification. The aim of this study was to investigate the contribution of VKA use to coronary artery calcification in low-risk AF patients.
METHODS AND RESULTS:
A prospective coronary calcium scan was performed in 157 AF patients without significant cardiovascular disease (108 males; mean age 57 ± 9 years). A total of 71 (45%) patients were chronic VKA users. The duration of VKA treatment varied between 6 and 143 months (mean 46 months). No significant differences in clinical characteristics were found between patients on VKA treatment and non-anticoagulated patients. However, median coronary artery calcium scores differed significantly between patients without and patients with VKA treatment [0, inter-quartile range (IQR) 0-40, vs. 29, IQR 0-184; P = 0.001]. Mean coronary calcium scores increased with the duration of VKA use (no VKA: 53 ± 115, 6-60 months on VKA: 90 ± 167, and >60 months on VKA: 236 ± 278; P < 0.001). Multivariable logistic regression analysis revealed that age and VKA treatment were significantly related to increased coronary calcium score. CONCLUSION:
Patients using VKA show increased levels of coronary calcification. Age and VKA treatment were independently related to increased coronary calcium score.

Blood Rev. 2012 Jul;26(4):155-66. doi: 10.1016/j.blre.2012.03.002. Epub 2012 Apr 18.
Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists.
Chatrou ML, Winckers K, Hackeng TM, Reutelingsperger CP, Schurgers LJ.
Vitamin K-antagonists (VKA) are the most widely used anti-thrombotic drugs with substantial efficacy in reducing risk of arterial and venous thrombosis. Several lines of evidence indicate, however, that VKA inhibit not only post-translational activation of vitamin K-dependent coagulation factors but also synthesis of functional extra-hepatic vitamin K-dependent proteins thereby eliciting undesired side-effects. Vascular calcification is one of the recently revealed side-effects of VKA. Vascular calcification is an actively regulated process involving vascular cells and a number of vitamin K-dependent proteins. Mechanistic understanding of vascular calcification is essential to improve VKA-based treatments of both thrombotic disorders and atherosclerosis. This review addresses vitamin K-cycle and vitamin K-dependent processes of vascular calcification that are affected by VKA. We conclude that there is a growing need for better understanding of the effects of anticoagulants on vascular calcification and atherosclerosis.

Arterioscler Thromb Vasc Biol. 2000 Feb;20(2):317-27.
Warfarin-induced artery calcification is accelerated by growth and vitamin D.
Price PA, Faus SA, Williamson MK.
The present studies demonstrate that growth and vitamin D treatment enhance the extent of artery calcification in rats given sufficient doses of Warfarin to inhibit gamma-carboxylation of matrix Gla protein, a calcification inhibitor known to be expressed by smooth muscle cells and macrophages in the artery wall. The first series of experiments examined the influence of age and growth status on artery calcification in Warfarin-treated rats. Treatment for 2 weeks with Warfarin caused massive focal calcification of the artery media in 20-day-old rats and less extensive focal calcification in 42-day-old rats. In contrast, no artery calcification could be detected in 10-month-old adult rats even after 4 weeks of Warfarin treatment. To directly examine the importance of growth to Warfarin-induced artery calcification in animals of the same age, 20-day-old rats were fed for 2 weeks either an ad libitum diet or a 6-g/d restricted diet that maintains weight but prevents growth. Concurrent treatment of both dietary groups with Warfarin produced massive focal calcification of the artery media in the ad libitum-fed rats but no detectable artery calcification in the restricted-diet, growth-inhibited group. Although the explanation for the association between artery calcification and growth status cannot be determined from the present study, there was a relationship between higher serum phosphate and susceptibility to artery calcification, with 30% higher levels of serum phosphate in young, ad libitum-fed rats compared with either of the groups that was resistant to Warfarin-induced artery calcification, ie, the 10-month-old rats and the restricted-diet, growth-inhibited young rats. This observation suggests that increased susceptibility to Warfarin-induced artery calcification could be related to higher serum phosphate levels. The second set of experiments examined the possible synergy between vitamin D and Warfarin in artery calcification. High doses of vitamin D are known to cause calcification of the artery media in as little as 3 to 4 days. High doses of the vitamin K antagonist Warfarin are also known to cause calcification of the artery media, but at treatment times of 2 weeks or longer yet not at 1 week. In the current study, we investigated the synergy between these 2 treatments and found that concurrent Warfarin administration dramatically increased the extent of calcification in the media of vitamin D-treated rats at 3 and 4 days. There was a close parallel between the effect of vitamin D dose on artery calcification and the effect of vitamin D dose on the elevation of serum calcium, which suggests that vitamin D may induce artery calcification through its effect on serum calcium. Because Warfarin treatment had no effect on the elevation in serum calcium produced by vitamin D, the synergy between Warfarin and vitamin D is probably best explained by the hypothesis that Warfarin inhibits the activity of matrix Gla protein as a calcification inhibitor. High levels of matrix Gla protein are found at sites of artery calcification in rats treated with vitamin D plus Warfarin, and chemical analysis showed that the protein that accumulated was indeed not gamma-carboxylated. These observations indicate that although the gamma-carboxyglutamate residues of matrix Gla protein are apparently required for its function as a calcification inhibitor, they are not required for its accumulation at calcification sites.

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , , , .