Categories:

PUFA and Liver Toxicity; Protection by Saturated Fats

Also see:
Fish Oils Increase Intestinal Permeability
PUFA Inhibit Glucuronidation
Protective “Essential Fatty Acid Deficiency”
Liver saving saturated fats
PUFAS, LEAKY GUT, ENDOTOXEMIA, AND THE LIVER
Soybean oil causes more obesity than coconut oil and fructose
The common oil that science now shows is worse than sugar

“One of the roles of fat in the food is to stimulate the secretion of bile by the gall bladder. Besides that important function, saturated fats have a variety of protective, antiinflammatory effects, including the reduction of endotoxemia and lipid peroxidation (Nanji, et al., 1997). “Coconut oil completely abolished the responses to endotoxin” (Wan and Grimble, 1987).” -Ray Peat, PhD

Clin Sci (Lond). 1987 Mar;72(3):383-5.
Effect of dietary linoleate content on the metabolic response of rats to Escherichia coli endotoxin.
Wan JM, Grimble RF.
Dietary fat influences many aspects of immune function. Escherichia coli endotoxin is a potent stimulator of interleukin 1 production from macrophages. The present study examines the effect of feeding with fat diets rich (corn oil) and poor (coconut oil) in linoleate at high and low concentrations on responses to endotoxin. Spleen phosphatidylcholine linoleate contents were higher in the corn oil than in the coconut oil group and arachidonate concentrations were highest in the group fed a high concentration of corn oil. Coconut oil completely abolished the responses to endotoxin. The inhibitory effects of coconut oil could largely be due to reduced prostaglandin and leukotriene synthesis.

Hepatology. 1997 Dec;26(6):1538-45.
Dietary saturated fatty acids down-regulate cyclooxygenase-2 and tumor necrosis factor alfa and reverse fibrosis in alcohol-induced liver disease in the rat.
Nanji AA, Zakim D, Rahemtulla A, Daly T, Miao L, Zhao S, Khwaja S, Tahan SR, Dannenberg AJ.
We investigated the potential of dietary saturated fatty acids to decrease endotoxemia and suppress expression of cyclooxygenase 2 (Cox-2) and tumor necrosis factor alpha (TNF-alpha) in established alcohol-induced liver injury. Six groups (five rats/group) of male Wistar rats were studied. Rats in group 1 were fed a fish oil-ethanol diet for 6 weeks. Rats in groups 2, 3, and 4 were fed fish oil and ethanol for 6 weeks. Ethanol administration was stopped at this time, and the rats were switched to isocaloric diets containing dextrose with fish oil (group 2), palm oil (group 3), or medium-chain triglycerides (group 4) as the source of fat for an additional 2 weeks. Rats in groups 5 and 6 were fed fish oil-ethanol and fish oil-dextrose, respectively, for 8 weeks. Liver samples were analyzed for histopathology, lipid peroxidation, and levels of messenger RNA (mRNA) for Cox-2 and TNF-alpha. Concentrations of endotoxin were determined in plasma. The most severe inflammation and fibrosis were detected in groups 1 and 5, as were the highest levels of endotoxin, lipid peroxidation, and mRNA for Cox-2 and TNF-alpha. After ethanol was discontinued, there was minimal histological improvement in group 2 but near normalization of the histology, including regression of fibrosis, in groups 3 and 4. Histological improvement was associated with decreased levels of endotoxin, lipid peroxidation, and reduced expression of Cox-2 and TNF-alpha. The data indicate that a diet enriched in saturated fatty acids (groups 3 and 4) effectively reverses alcohol-induced liver injury, including fibrosis. The therapeutic effects of saturated fatty acids may be explained, at least in part, by reduced endotoxemia and lipid peroxidation, which in turn result in decreased levels of TNF-alpha and Cox-2.

Saturated fats are protective against free radical damage and can reverse liver fibrosis. -Ray Peat, PhD

Gastroenterology. 1995 Aug;109(2):547-54.
Dietary saturated fatty acids: a novel treatment for alcoholic liver disease.
Nanji AA, Sadrzadeh SM, Yang EK, Fogt F, Meydani M, Dannenberg AJ.
BACKGROUND & AIMS:
Lipid peroxidation may be important in the pathogenesis of alcoholic liver injury. The purpose of this study was to determine whether a saturated fatty acid-based therapy (palm oil) could decrease lipid peroxidation and alcoholic liver injury during ethanol withdrawal.
METHODS:
Three groups of male Wistar rats (5 rats/group) were studied. Rats in group 1 were fed a fish oil-ethanol diet for 6 weeks; rats in groups 2 and 3 were fed a fish oil-ethanol diet for 6 weeks before treatment with fish oil-dextrose (group 2) or palm oil-dextrose (group 3) for 2 weeks. Liver samples were analyzed for histopathology, lipid peroxidation, fatty acid composition, cytochrome P450 2E1 activity, and tocopherol levels.
RESULTS:
By 6 weeks, all rats had developed fatty liver, inflammation, and necrosis. Group 2 showed minimal histological improvement, whereas group 3 showed near normalization of the histology. The improvement in group 3 was associated with decreased lipid peroxidation and P450 2E1 activity. Higher levels of omega-3 fatty acids were detected in group 2 than group 3. Tocopherol levels were similar among the groups.
CONCLUSIONS:
A diet enriched in saturated but not unsaturated fatty acids reversed alcoholic liver injury. This effect may be explained by down-regulation of lipid peroxidation.

Alcohol Clin Exp Res. 1989 Feb;13(1):15-9.
Beef fat prevents alcoholic liver disease in the rat.
Nanji AA, Mendenhall CL, French SW.
The amount and type of dietary fat is thought to be important in the pathogenesis of alcoholic liver disease (ALD). We investigated the role of different dietary fats in our rat model for ALD. Liver pathology was evaluated in rats fed ethanol and lard or tallow or corn oil over a period of 2 to 6 months. All experimental animals were pair-fed the same diet as controls except that glucose was isocalorically replaced by ethanol. Rats fed tallow and ethanol developed none of the features of ALD, those fed lard and ethanol developed minimal to moderate disease, rats fed corn oil and ethanol developed the most severe pathology. The degree of histopathological abnormality correlated with the linoleic acid content of fat in the diet (tallow 0.7%, lard 2.5%, corn oil 56.6%). We postulate that linoleic acid facilitates development of ALD and provides an explanation for our previous epidemiological observations.

Alcohol Clin Exp Res. 1986 Jun;10(3):271-3.
Dietary factors and alcoholic cirrhosis.
Nanji AA, French SW.
Mortality from cirrhosis in many countries deviates markedly from that expected for a given per capita alcohol intake. We investigated the possibility that dietary factors might explain the deviation expected and actual mortality rates in different countries. Deviations from expected cirrhosis mortality was calculated as a percentage for 17 different countries, all of whom had carrier rates for hepatitis B virus of less than 2%. The percentage of deviation was correlated with dietary intake of saturated fat, polyunsaturated fat, cholesterol, and also with mortality from ischemic heart disease. The percentage of deviation correlated inversely with dietary cholesterol (r = -0.86, p 0.001) and saturated fat (r = -0.80, p 0.001) and positively with polyunsaturated fats (r = -0.55 p 0.05). This suggests that both saturated fat and cholesterol protect against alcoholic cirrhosis while polyunsaturated fats promote cirrhosis. The correlation between percentage of deviation and ischemic heart disease (r = -0.78, p 0.002) suggests that those factors that promote ischemic heart disease protect against alcoholic cirrhosis.

Some of the clearest evidence of the protective effects of saturated fats has been published by A.A. Nanji’s group, showing that they can reverse the inflammation, necrosis, and fibrosis of alcoholic liver disease, even with continued alcohol consumption, while fish oil and other unsaturated fats exacerbate the problems (Nanji, et al., 2001). -Ray Peat, PhD

J Pharmacol Exp Ther. 2001 Nov;299(2):638-44.
Dietary saturated fatty acids reverse inflammatory and fibrotic changes in rat liver despite continued ethanol administration.
Nanji AA, Jokelainen K, Tipoe GL, Rahemtulla A, Dannenberg AJ.
We investigated the potential of dietary saturated fatty acids to reverse alcoholic liver injury despite continued administration of alcohol. Five groups (six rats/group) of male Wistar rats were studied. Rats in groups 1 and 2 were fed a fish oil-ethanol diet for 8 and 6 weeks, respectively. Rats in groups 3 and 4 were fed fish oil and ethanol for 6 weeks before being switched to isocaloric diets containing ethanol with palm oil (group 3) or medium-chain triglycerides (MCTs, group 4) for 2 weeks. Rats in group 5 were fed fish oil and dextrose for 8 weeks. Liver samples were analyzed for histopathology, lipid peroxidation, nuclear factor-kappaB (NF-kappaB) activation, and mRNAs for cyclooxygenase-2 (Cox-2) and tumor necrosis factor-alpha (TNF-alpha). Endotoxin in plasma was determined. The most severe inflammation and fibrosis were detected in groups 1 and 2, as were the highest levels of endotoxin, lipid peroxidation, activation of NF-kappaB, and mRNAs for Cox-2 and TNF-alpha. After the rats were switched to palm oil or MCT, there was marked histological improvement with decreased levels of endotoxin and lipid peroxidation, absence of NF-kappaB activation, and reduced expression of TNF-alpha and Cox-2. A diet enriched in saturated fatty acids effectively reverses alcohol-induced necrosis, inflammation, and fibrosis despite continued alcohol consumption. The therapeutic effects of saturated fatty acids may be explained, at least in part, by reduced endotoxemia and lipid peroxidation, which in turn result in decreased activation of NF-kappaB and reduced levels of TNF-alpha and Cox-2.

J Pharmacol Exp Ther. 2001 Dec;299(3):832-9.
Arginine reverses ethanol-induced inflammatory and fibrotic changes in liver despite continued ethanol administration.
Nanji AA, Jokelainen K, Lau GK, Rahemtulla A, Tipoe GL, Polavarapu R, Lalani EN.
We investigated the potential of arginine to reverse pathological changes in alcohol-induced liver injury. Four groups (six rats/group) of male Wistar rats were fed a fish oil-ethanol diet for 6 (group 2) or 8 (group 1) weeks. Rats in group 3 were fed fish oil-ethanol for 6 weeks, after which they were administered arginine with fish oil-ethanol for an additional 2 weeks. Rats in group 4 were fed fish oil-dextrose for 8 weeks. Liver samples were analyzed for histopathology, lipid peroxidation, cytochrome P4502E1 activity, nuclear factor-kappaB, and levels of messenger RNA for tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. Concentrations of endotoxin were measured in plasma. The most severe inflammation and fibrosis was detected in groups 1 and 2, as were the highest levels of endotoxin, lipid peroxidation, cytochrome P450 2E1 activity, activation of nuclear factor-kappaB, and mRNA levels for tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. Plasma nitric oxide was also increased as was nitrotyrosine in liver. After arginine was administered, there was marked improvement in the pathological changes accompanied by decreased levels of endotoxin, lipid peroxidation, activation of nuclear factor-kappaB, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide, and nitrotyrosine staining. The therapeutic effects of arginine are probably secondary to increased levels of nitric oxide but other effects of arginine cannot be excluded.

Biochem Pharmacol. 2004 Jan 1;67(1):191-9.
Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7.
Tsoutsikos P, Miners JO, Stapleton A, Thomas A, Sallustio BC, Knights KM.
Renal ischaemia is associated with accumulation of fatty acids (FA) and mobilisation of arachidonic acid (AA). Given the capacity of UDP-glucuronosyltransferase (UGT) isoforms to metabolise both drugs and FA, we hypothesised that FA would inhibit renal drug glucuronidation. The effect of FA (C2:0-C20:5) on 4-methylumbelliferone (4-MU) glucuronidation was investigated using human kidney cortical microsomes (HKCM) and recombinant UGT1A9 and UGT2B7 as the enzyme sources. 4-MU glucuronidation exhibited Michaelis-Menten kinetics with HKCM (apparent K(m) (K(m)(app)) 20.3 microM), weak substrate inhibition with UGT1A9 (K(m)(app) 10.2 microM, K(si) 289.6 microM), and sigmoid kinetics with UGT2B7 (S(50)(app)440.6 microM) Similarly, biphasic UDP-glucuronic acid (UDPGA) kinetics were observed with HKCM (S(50) 354.3 microM) and UGT1A9 (S(50) 88.2 microM). In contrast, the Michaelis-Menten kinetics for UDPGA observed with UGT2B7 (K(m)(app) 493.2 microM) suggested that kinetic interactions with UGTs were specific to the xenobiotic substrate and the co-substrate (UDPGA). FA (C16:1-C20:5) significantly inhibited (25-93%) HKCM, UGT1A9 or UGT2B7 catalysed 4-MU glucuronidation. Although linoleic acid (LA) and AA were both competitive inhibitors of 4-MU glucuronidation by HKCM (K(i)(app) 6.34 and 0.15 microM, respectively), only LA was a competitive inhibitor of UGT1A9 (K(i)(app) 4.06 microM). In contrast, inhibition of UGT1A9 by AA exhibited atypical kinetics. These data indicate that LA and AA are potent inhibitors of 4-MU glucuronidation catalysed by human kidney UGTs and recombinant UGT1A9 and UGT2B7. It is conceivable therefore that during periods of renal ischaemia FA may impair renal drug glucuronidation thus compromising the protective capacity of the kidney against drug-induced nephrotoxicity.

Metabolism. 2011 Sep 22. [Epub ahead of print]
Arachidonic acid and docosahexaenoic acid supplemented to an essential fatty acid-deficient diet alters the response to endotoxin in rats.
Ling PR, Malkan A, Le HD, Puder M, Bistrian BR.
This study examined fatty acid profiles, triene-tetraene ratios (20:3n9/20:4n6), and nutritional and inflammatory markers in rats fed an essential fatty acid-deficient (EFAD) diet provided as 2% hydrogenated coconut oil (HCO) alone for 2 weeks or with 1.3 mg of arachidonic acid (AA) and 3.3 mg of docosahexaenoic acid (DHA) (AA + DHA) added to achieve 2% fat. Healthy controls were fed an AIN 93M diet (AIN) with 2% soybean oil. The HCO and AA + DHA diets led to significant reductions of linoleic acid, α-linolenic acid, and AA (20:4n6) and increases in Mead acid (20:3n9) in plasma and liver compared with the AIN diet; but the triene-tetraene levels remained well within normal. However, levels of 20:3n9 and 20:4n6 were lower in liver phospholipids in the AA + DHA than in HCO group, suggesting reduced elongation and desaturation in ω-9 and -6 pathways. The AA + DHA group also had significantly lower levels of 18:1n9 and 16:1n7 as well as 18:1n9/18:0 and 16:1n7/16:0 than the HCO group, suggesting inhibition of stearyl-Co A desaturase-1 activity. In response to lipopolysaccharide, the levels of tumor necrosis factor and interleukin-6 were significantly lower with HCO, reflecting reduced inflammation. The AA + DHA group had higher levels of IL-6 and C-reactive protein than the HCO group but significantly lower than the AIN group. However, in response to endotoxin, interleukin-6 was higher with AA + DHA than with AIN. Feeding an EFAD diet reduces baseline inflammation and inflammatory response to endotoxin long before the development of EFAD, and added AA + DHA modifies this response.

Ann Surg. 2003 Feb;237(2):246-55.
Protective effects of medium-chain triglycerides on the liver and gut in rats administered endotoxin.
Kono H, Fujii H, Asakawa M, Yamamoto M, Matsuda M, Maki A, Matsumoto Y.
All rats given corn oil died after LPS administration; however, this mortality was prevented by MCT in a dose-dependent manner. Rats given corn oil showed liver injury after LPS administration. In contrast, MCT prevented this pathologic change nearly completely. MCT blunted CD14 expression on the Kupffer cells and TNF-alpha production by isolated Kupffer cells; however, there were no differences in phagocytic index between the two groups. The length of the intestinal epithelium was increased in the MCT group compared to the corn oil group. Further, after LPS administration, increases in gut permeability and injury were prevented by MCT. Importantly, MCT also prevented hepatic energy charge and gut injuries in this condition.

Am J Physiol Gastrointest Liver Physiol. 2001 Dec;281(6):G1348-56.
Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines.
Nanji AA, Jokelainen K, Fotouhinia M, Rahemtulla A, Thomas P, Tipoe GL, Su GL, Dannenberg AJ.
Alcoholic liver injury is more severe and rapidly developing in women than men. To evaluate the reason(s) for these gender-related differences, we determined whether pathogenic mechanisms important in alcoholic liver injury in male rats were further upregulated in female rats. Male and age-matched female rats (7/group) were fed ethanol and a diet containing fish oil for 4 wk by intragastric infusion. Dextrose isocalorically replaced ethanol in control rats. We analyzed liver histopathology, lipid peroxidation, cytochrome P-450 (CYP)2E1 activity, nonheme iron, endotoxin, nuclear factor-kappa B (NF-kappa B) activation, and mRNA levels of cyclooxygenase-1 (COX-1) and COX-2, tumor necrosis factor-alpha (TNF-alpha), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). Alcohol-induced liver injury was more severe in female vs. male rats. Female rats had higher endotoxin, lipid peroxidation, and nonheme iron levels and increased NF-kappa B activation and upregulation of the chemokines MCP-1 and MIP-2. CYP2E1 activity and TNF-alpha and COX-2 levels were similar in male and female rats. Remarkably, female rats fed fish oil and dextrose also showed necrosis and inflammation. Our findings in ethanol-fed rats suggest that increased endotoxemia and lipid peroxidation in females stimulate NF-kappa B activation and chemokine production, enhancing liver injury. TNF-alpha and COX-2 upregulation are probably important in causing liver injury but do not explain gender-related differences.

Lipids in Health and Disease (2011) Volume: 10, Issue: 1, Pages: 184
Dietary Saturated and Monounsaturated Fats Protect Against Acute Acetaminophen Hepatotoxicity by Altering Fatty Acid Composition of Liver Microsomal Membrane in Rats
by Jinah Hwang, Yun-Hee Chang, Jung Park, Soo Kim, Haeyon Chung, Eugene Shim, Hye Hwang
BACKGROUND:Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. METHODS:Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity.RESULTS:Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. CONCLUSIONS:Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

J Clin Invest. 1967 Sep;46(9):1451-60.
Difference in hepatic metabolism of long- and medium-chain fatty acids: the role of fatty acid chain length in the production of the alcoholic fatty liver.
Lieber CS, Lefèvre A, Spritz N, Feinman L, DeCarli LM.
Replacement of dietary triglycerides containing long-chain fatty acids (LCFA) by triglycerides containing medium-chain fatty acids (MCFA) markedly reduced the capacity of alcohol to produce fatty liver in rats. After 24 days of ethanol and MCFA, the increase in hepatic triglycerides was only 3 times that of controls, whereas an 8-fold rise was observed after ethanol and LCFA. The triglyceride fatty acids that accumulated in the liver after feeding of ethanol with MCFA contained only a small percentage of the MCFA; their composition also differed strikingly from that of adipose lipids. To study the mechanism of the reduction in steatosis, we compared oxidation to CO(2) and incorporation into esterified lipids of (14)C-labeled chylomicrons or palmitate-(14)C (representing LCFA), and of octanoate-(14)C (as MCFA) in liver slices and isolated perfused livers, in the presence or absence of ethanol. Ethanol depressed the oxidation of all substrates to CO(2); MCFA, however, was much more oxidized and reciprocally much less esterified than LCFA, with a 100-fold difference in the ratio of esterified lipid-(14)C to (14)CO(2). Furthermore, in hepatic microsomal fractions incubated with alpha-glycerophosphate, octanoate was much less esterified than palmitate. This propensity of MCFA to oxidation rather than esterification represents a likely explanation for the reduction in alcoholic steatosis upon replacement of dietary LCFA by MCFA.

J Nutr. 2004 Apr;134(4):904-12.
Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition.
Ronis MJ, Korourian S, Zipperman M, Hakkak R, Badger TM.
Rats fed a saturated fat diet are protected from experimentally induced alcoholic liver disease, but the molecular mechanisms underlying this phenomenon remain in dispute. We fed male Sprague-Dawley rats intragastrically by total enteral nutrition using diets with or without ethanol. In 1 control and 1 ethanol group, the dietary fat was corn oil at a level of 45% of total energy. In other groups, saturated fat [18:82 ratio of beef tallow:medium-chain triglyceride (MCT) oil] was substituted for corn oil at levels of 10, 20, and 30% of total energy, while keeping the total energy from fat at 45%. After 70 d, liver pathology, serum alanine aminotransferase (ALT), biochemical markers of oxidative stress, liver fatty acid composition, cytochrome P450 2E1 (CYP2E1) expression and activity and cytochrome P450 4A (CYP4A) expression were assessed. In rats fed the corn oil plus ethanol diet, hepatotoxicity was accompanied by oxidative stress. As dietary saturated fat content increased, all measures of hepatic pathology and oxidative stress were progressively reduced, including steatosis (P < 0.05). Thus, saturated fat protected rats from alcoholic liver disease in a dose-responsive fashion. Changes in dietary fat composition did not alter ethanol metabolism or CYP2E1 induction, but hepatic CYP4A levels increased markedly in rats fed the saturated fat diet. Dietary saturated fat also decreased liver triglyceride, PUFA, and total FFA concentrations (P < 0.05). Increases in dietary saturated fat increased liver membrane resistance to oxidative stress. In addition, reduced alcoholic steatosis was associated with reduced fatty acid synthesis in combination with increased CYP4A-catalyzed fatty acid oxidation and effects on lipid export. These findings may be important in the nutritional management and treatment of alcoholic liver disease.

Alcohol Clin Exp Res. 2012 May;36(5):835-46. doi: 10.1111/j.1530-0277.2011.01673.x. Epub 2011 Dec 7.
The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease.
Kirpich IA, Feng W, Wang Y, Liu Y, Barker DF, Barve SS, McClain CJ.
BACKGROUND:
Interactions between the gut, immune system, and the liver, as well as the type of fat in the diet, are critical components of alcoholic liver disease (ALD). The goal of the present study was to determine the effects of saturated fat (SF) and unsaturated fat (USF) on ethanol (EtOH)-induced gut-liver interactions in a mouse model of ALD.
METHODS:
C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil) or SF (medium chain triglycerides:beef tallow). Control mice were pair-fed on an isocaloric basis. Liver injury and steatosis, blood endotoxin levels, intestinal permeability, and tight junction (TJ) integrity, as well as hepatic Toll-like receptor (TLR) gene expression, were evaluated.
RESULTS:
After 8 weeks of EtOH feeding, liver injury and steatosis were observed in USF + EtOH group compared with control and SF + EtOH. Significantly increased intestinal permeability in conjunction with elevated blood endotoxin levels were observed in the ileal segments of the mice fed USF + EtOH. USF diet alone resulted in down-regulation of intestinal TJ protein mRNA expression compared with SF. Importantly, alcohol further suppressed TJ proteins in USF + EtOH, but did not affect intestinal TJ in SF + EtOH group. The type of fat in the diet alone did not affect hepatic TLR expression. Compared with control animals, hepatic TLR (TLR 1, 2, 3, 4, 7, 8, 9) mRNA expression was significantly (p < 0.05) increased in USF + EtOH, but not in SF + EtOH group. Notably, TLR5 was the only up-regulated TLR in both SF + EtOH and USF + EtOH groups.
CONCLUSIONS:
Dietary fat is an important cofactor in alcohol-associated liver injury. We demonstrate that USF (corn oil/linoleic acid) by itself results in dysregulation of intestinal TJ integrity leading to increased gut permeability, and alcohol further exacerbates these alterations. We postulate that elevated blood endotoxin levels in response to USF and alcohol in conjunction with up-regulation of hepatic TLRs combine to cause hepatic injury in ALD.

Lipids Health Dis. 2011 Oct 20;10:184.
Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats.
Hwang J, Chang YH, Park JH, Kim SY, Chung H, Shim E, Hwang HJ.
BACKGROUND:
Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity.
METHODS:
Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity.
RESULTS:
Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets.
CONCLUSIONS:
Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

Toxicol. 2013 May 1. [Epub ahead of print]
Rapeseed oil-rich diet alters hepatic mitochondrial membrane lipid composition and disrupts bioenergetics.
Monteiro JP, Pereira CV, Silva AM, Maciel E, Baldeiras I, Peixoto F, Domingues MR, Jurado AS, Oliveira PJ.
Diet is directly related with physiological alterations occurring at a cell and subcellular level. However, the role of diet manipulation on mitochondrial physiology is still largely unexplored. Aiming at correlating diet with alterations of mitochondrial membrane composition and bioenergetics, Wistar-Han male rats were fed for 11, 22 and 33 days with a rapeseed oil-based diet and mitochondrial bioenergetics, and membrane composition were compared at each time point with a standard diet group. Considerable differences were noticed in mitochondrial membrane lipid composition, namely in terms of fatty acyl chains and relative proportions of phospholipid classes, the modified diet inducing a decrease in the saturated to unsaturated molar ratio and an increase in the phosphatidylcholine to phosphatidylethanolamine molar ratio. Mass spectrometry lipid analysis showed significant differences in the major species of cardiolipin, with an apparent increased incorporation of oleic acid as a result of exposure to the modified diet. Rats fed the modified diet during 22 days showed decreased hepatic mitochondrial state 3 respiration and were more susceptible to Ca2+-induced transition pore opening. Rapeseed oil-enriched diet also appeared to promote a decrease in hydroperoxide production by the respiratory chain, although a simultaneous decrease in vitamin E content was detected. In conclusion, our data indicate that the rapeseed oil diet causes negative alterations on hepatic mitochondrial bioenergetics, which may result from membrane remodeling. Such alterations may have an impact not only on energy supply to the cell, but also on drug-induced hepatic mitochondrial liabilities.

Ann Nutr Metab 1991;35(5):253-60.
Effect of dietary avocado oils on hepatic collagen metabolism.
Wermam MJ, Mokady S, Neeman I
The effect of various avocado and soybean oils on collagen metabolism in the liver was studied in growing female rats for 8 weeks and in day-old chicks for 1 week. In comparison with rats fed either refined avocado oil, refined or unrefined soybean oils, rats fed unrefined avocado oil showed a significant decrease in total collagen solubility in the liver, while there were no changes in total collagen, protein and moisture content. Chicks fed unrefined avocado oil as compared to those fed refined avocado oil also showed a decrease in hepatic total soluble collagen while hepatic total collagen remained unaffected. Electron micrographs and light-microscope examinations of rats’ liver revealed collagen accumulation in the periportal location. This is suggestive of the early stages of fibrosis.

Alcohol. 2004 Aug;34(1):3-8.
Role of fatty liver, dietary fatty acid supplements, and obesity in the progression of alcoholic liver disease: introduction and summary of the symposium.Purohit V, Russo D, Coates PM.
Alcoholic liver disease is a major cause of illness and death in the United States. In the initial stages of the disease, fat accumulation in hepatocytes leads to the development of fatty liver (steatosis), which is a reversible condition. If alcohol consumption is continued, steatosis may progress to hepatitis and fibrosis, which may lead to liver cirrhosis. Alcoholic fatty liver has long been considered benign; however, increasing evidence supports the idea that it is a pathologic condition. Blunting of the accumulation of fat within the liver during alcohol consumption may block or delay the progression of fatty liver to hepatitis and fibrosis. To achieve this goal, it is important to understand the underlying biochemical and molecular mechanisms by which chronic alcohol consumption leads to fat accumulation in the liver and fatty liver progresses to hepatitis and fibrosis. In addition to alcohol consumption, dietary fatty acids and obesity have been shown to affect the degree of fat accumulation within the liver. Again, it is important to know how these factors modulate the progression of alcoholic liver disease. The National Institute on Alcohol Abuse and Alcoholism and the Office of Dietary Supplements, National Institutes of Health, sponsored a symposium on “Role of Fatty Liver, Dietary Fatty Acid Supplements, and Obesity in the Progression of Alcoholic Liver Disease” in Bethesda, Maryland, USA, October 2003. The following is a summary of the symposium. Alcoholic fatty liver is a pathologic condition that may predispose the liver to further injury (hepatitis and fibrosis) by cytochrome P450 2E1 induction, free radical generation, lipid peroxidation, nuclear factor-kappa B activation, and increased transcription of proinflammatory mediators, including tumor necrosis factor-alpha. Increased acetaldehyde production and lipopolysaccharide-induced Kupffer cell activation may further exacerbate liver injury. Acetaldehyde may promote hepatic fat accumulation by impairing the ability of peroxisome proliferator-activated receptor alpha to bind DNA, and by increasing the synthesis of sterol regulatory binding protein-1. Unsaturated fatty acids (corn oil, fish oil) exacerbate alcoholic liver injury by accentuating oxidative stress, whereas saturated fatty acids are protective. Polyenylphosphatidylcholine may prevent liver injury by down-regulating cytochrome P450 2E1 activity, attenuating oxidative stress, reducing the number of activated hepatic stellate cells, and up-regulating collagenase activity. Nonalcoholic steatohepatitis may develop through several mechanisms, such as oxidative stress, mitochondrial dysfunction and associated impaired fat metabolism, dysregulated cytokine metabolism, insulin resistance, and altered methionine/S-adenosylmethionine/homocysteine metabolism. Obesity (adipose tissue) may contribute to the development of alcoholic liver disease by generating free radicals, increasing tumor necrosis factor-alpha production, inducing insulin resistance, and producing fibrogenic agents, such as angiotensin II, norepinephrine, neuropeptide Y, and leptin. Finally, alcoholic fatty liver transplant failure may be linked to oxidative stress. In vitro treatment of fatty livers with interleukin-6 may render allografts safer for clinical transplantation.

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , .


2 Responses

Stay in touch with the conversation, subscribe to the RSS feed for comments on this post.

  1. George Henderson says

    Excellent compilation, I have linked to it here:
    http://hopefulgeranium.blogspot.co.nz/2012/07/if-we-follow-advice-laid-out-in.html

    Suggest you add “ito cell” and “hepatic stellate cell” as search terms as this helps uncover more such data.

  2. Team FPS says

    I’ll consider the addition. Thanks for the comment and link.